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UNIT - II Interference and Diffraction 
 

 Interference: 
 

� Techniques for Obtaining Interference: 
The phase relations between the waves emitted by two independent light 

sources rapidly changes with time and therefore they can never be coherent. 

However, if two sources are derived from a single source by some device, then 

any phase change occurring in one source is simultaneously accompanied by the 

same phase change in other source.   

Therefore, the phase difference between the waves emerging from the two 

sources remains constant and the sources are coherent. The techniques used for 

creating coherent sources of light can be divided in to the following two classes.  

1. Wavefront splitting 

2. Amplitude splitting 

 

1. Wavefront splitting:   

In this methods light wavefront emerging from a narrow slit dividing in to 

two very closed slits. The wavefront is divided in to two parts. The two parts of 

the same wavefront travel through different paths and produce fringe pattern. 

This is known as interference due to division of wavefront. This method is 

useful only with narrow sources. Examples: Young’s double slits, Fresnel’s 

double mirror, Fresnel’s biprism, Lloyd’s mirror etc. 

 

2. Amplitude splitting: 

In this method the amplitude (intensity) of a light wave is divided into two 

parts known as reflected and transmitted components. The two parts travel 

through different path and returns to produced interference fringes. It is known 

as a interference due to division of amplitude. Examples: Optical elements 

such as beam splitters, mirrors are used for achieving division of amplitude. 

Interference in thin film (wedge, Newton’s ring etc.), Michelson’s interferometer 

utilize this method.  

 

 

� Fresnel Biprism: 
Fresnel used a biprism to show interference phenomenon. The biprism 

consists of two prisms of very small refracting angles joined base to base. In 

practice, a thin glass plate is taken and one of its faces is ground and polished till 

a prism (see figure 1a) is formed with an angle of about 1790 and two side angles 

of the order of 300. 

When a light ray is incident on an ordinary prism, the ray is bent through 

an angle called the angle of deviation. As a result, the ray emerging out of the 
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prism appears to have emanated from a source S’ located at a small distance 

above the real source, as   shown in figure 1b. The prism produced a virtual 

image of the source.   

 
                                                    Fig. 1 

 

A biprism creates two virtual sources S1 and S2 as shown in fig. 1C. These 

two virtual sources are images of the same source S produced by refraction and 

are hence coherent. 

 

 

� Experimental Arrangement:  
The biprism is mounted suitably on an optical bench. An optical bench 

consists of two horizontal long rods, which are kept strictly parallel to each other 

and at the same level. A monochromatic light source such as sodium vapour lamp 

illuminates a vertical slit S. Therefore the slits act as a narrow linear 

monochromatic light source. The biprism is placed in such a way that its 

refracting edge is parallel to the length of the slit S. A single cylindrical wavefront 

incident on both prisms. The top portion of wavefront is refracted downward 

and appear to have emanated from the virtual image S1. The lower segment, 

falling on the lower part of the biprism, is refracted upward and appears to have 

emanated from the virtual source S2. The virtual sources S1 and S2 are coherent 

as shown in fig.2(a), and hence the light waves are interfere in the region beyond 

the biprism.  

 
Fig.2 

If a screen is held there, interference fringes are seen. In order to observe 

fringes, a micrometer eyepiece is used. 

 

Theory: 

The theory of the interference and fringes formation in case of Fresnel 

biprism is same as in the case of the double slit. As the point is equidistance from 
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S1 and S2, the central bright fringe of maximum intensity occurs there. On both 

the sides of O, alternate bright and dark fringes are produced as shown in 

fig.2(b). The width of the dark or bright fringe is given by 

 

� =
��

�
                                                                    �1� 

 

  Where D = (a+b) is the distance of the source from the eyepiece             

 

 

� Determination of Wavelength of Light: 
The wave length of light can be determine by using above equ.(1). The 

values of β, D and d are to be measured. These measurements are done as 

follows: 

Adjustments: 

A narrow adjustable slit S, the biprism, and a micrometer eyepiece are 

mounted at the same height and in a straight line. The slit is made vertical and 

parallel to the refracting edges of the biprism by rotating it in its own plane. It is 

illuminated with the light from the monochromatic source. The biprism is moved 

along the optical bench till, on looking through it along the axis of the optical 

bench, two equally bright vertical slit images are seen. Then the eyepiece is 

removed till the fringes appear in the focal plane of the eyepiece. 

 

(i) Determination of fringe width β :  

When the fringes are observed in the field of view of the eyepiece, the 

vertical cross wire is made to coincide with the centre of one of the fringes.  The 

position of the eyepiece is read on the scale, say �0 .The micrometer screw of the 

eyepiece is moved slowly and the number of the bright fringes N that pass across 

the cross-wire is counted. The position of the cross-wire is again read, say ��.The 

fringe width is then given by 

� =
�	 − �0

�
                                                                (2) 

 

(ii) Determination of  ‘d’: 

(a) A convex lens of short focal length is placed between the slit and the eye 

piece without disturbing their positions. The lens is moved back and forth 

near the biprism till a sharp pair of image of the slit is obtained in the field 

view of the eyepiece. The distance between the images is measured. Let it be 

denoted by d1.  Consider figure 3(a), If u is the distance of the slit and v that of 

the eyepiece from the lens, then the magnification is 

 



�
=
�1

�
                                                                        (3) 
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Figure 3 

The lens is then moved to a position nearer to the eyepiece, where again a 
pair of images of the slit is seen. The distance between the two sharp images 
is again measured. Let it be �2 . Again magnification is given by  

                                   
�



=
�2

�
                                                                (4) 

The magnification in one position is the reciprocal of the magnification in the 

other position. Multiplying the equations (2) and (3) we get 

�1�2

�
2 = 1      �
     � = =�1�2                                           (5) 

Using the value of β, d and D in equation � = ��

�
   The wavelength λ can be 

computed 

(b) The value of d can be determined as follows: 

The deviation δ produced in the path of a ray by a thin prism is given by  

� = (� − 1)� 

Where � is the refracting angle of the prism. From fig.2(a) it is seen that 

� = �/2, Since d is very small, we can write    � = � ∙ �   

�

2
=
�

2�
= (� − 1)� 

� = 2��� − 1��                                                            �6� 

 

Interference Fringes with White Light: 

In the biprism experiment if the slit is illuminated by white light, the 

interference pattern consists of a central white fringe flanked on its both the 

sides by a few coloured fringes. The central white fringe is the zero-order fringe. 

With monochromatic light all the bright fringes are of the same colour and it is 

not possible to locate the zero order fringe. Therefore, in order to locate the zero 

order fringe the biprism is to be illuminated by white light. 
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Lateral Displacement of Fringes: 

The biprism experiment can be used to determine the thickness of a given 

thin sheet of transparent material such as glass or mica. If a thin transparent 

sheet is introduced in the path of one of the two interfering beams, the fringe 

gets displaced from the central fring. By measuring the amount of displacement, 

the thickness of the sheet can be determined. 

Suppose S1 and S2 are the virtual coherent monochromatic sources. The 

point O is equidistant from S1 and S2. Therefore, the optical path �1� = �2�. Let a 

transparent plate G of thickness t and refractive index μ be introduced in the 

path of one of the beams as shown in fig.4, The optical path lengths �1� and �2� 

are now not equal and the central bright fringe shifts to P from O. The light 

waves from S1 to P travel partly in air and partly in the sheet G. The distance 

travel in air is(�1� − �) and that in the sheet is �. 

 
Figure 4 

 

The optical path ∆�1�= (�1� − �) + �� = �1� + (� − 1)� 
The optical path  ∆�2�= �2� 

The optical path difference at P is  ∆�1� − ∆�2�= 0, since in the presence of the thin 
sheet the optical path lengths �1� and �2� are equal and central zero fringe is 

obtained at P. 

Therefore, ∆�2�= �2�  

�1� + (� − 1)� = �2� 
 

�2� − �1� = (� − 1)� 
 But the path difference �2� − �1� = ��

�
 where � is the lateral shit of the central 

fringe due to the introduction of the thin sheet.  

(� − 1)� =
��

�
 

Thus the thickness of the sheet is given as  

� =
��

��� − 1�
                                                             �7� 

 

 

� Lloyd’s Single Mirror: 
In 1834, Lloyd devised an interesting method of producing interference, 

using a single mirror. The Lloyd’s mirror consists of a plane mirror about 30cm 

in length and 6 to 8  cm in breadth as shown in fig.5 
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Figure 5 

  It is polished on the front surface and blacked at the back to avoid 
multiple reflections. A cylindrical wavefront coming from a narrow slit S1 falls on 

the mirror which reflects a portion of the incident wavefront, gives a virtual 

image of the slit S2. Another portion of the wavefront proceeds directly from the 

slit S1 to the screen. The slits S1 and S2 act as two coherent sources. Interference 

between direct and reflected waves occurs within the region of overlapping of 

the two beams and fringes are produced on the screen placed at a distance D 

from S1 in the shaded portion EF. 

The point O is equidistant from S1 and S2. Therefore central (zero-order) 

fringe is expected to lie at O and it is also expected to be bright. However it is not 

usually seen, since the point O lies outside the region of interference. 

By moving the screen nearer to the mirror such that it comes into contact 

with the mirror, the point O can be just brought into the region of interference. 

With white light the central fringe at O is expected to be white but in practice it is 

dark. The occurrence of dark fringe is due to change of phase π when reflected 

from the mirror. The phase change of π equal to a path difference of λ/ 2 and 

hence destructive interference occurs. 

 

Determination of Wavelength: 

The fringe width is given by             � =
��

�
    

Measuring    β, D and d the wavelength λ can be determined. 
 

Comparison between the fringes produced by biprism and Lloyd’s mirror: 

 

Sr 

No 

Biprism Lloyd’s mirror 

1 The complete set of fringes is 

obtained 

Only few fringes on one side of the 

central fringe are observed and the 

central fringe being itself invisible 

2 The central fringe is bright The central fringe is dark 

3 The central fringe is less sharp The central fringe is sharp 

 

� Newton’s Ring: 
Newton’s rings are an example of fringes of equal thickness. Newton’s 

rings are formed when a plano-convex lens P of a large radius of curvature 

placed on a sheet of plane glass AB is illuminated from the top with 

monochromatic light as shown in fig. 6 

The combination forms a thin circular air film of variable thickness in all 

directions around the point of contact of the lens and the glass plate. The air film 
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is circular centre is O. The interference fringes are observed in the form of a 

series of concentric rings with their centre at O. Newton originally observed 

these concentric circular fringes and hence they are called Newton’s rings    

 
Figure 6 

 

The experimental arrangement for observing Newton’s rings is shown in 

fig.6. The light from monochromatic source is incident on convex lens L, the rays 

becomes parallel and  it is incident on a glass plate inclined at 450 to the 

horizontal, and is reflected normally down on to a plano-convex lens placed on a 

flat glass plate. Part of the light incident on the system is reflected from the glass 

–to-air boundary, say from point D as shown in fig.7. 

 
Figure 7 

 

The remainder of the light is transmitted through the air film. It is again 

reflected from the air-to-glass boundary, say from point J. The two rays reflected 

from the top and bottom of the air film are divided through division of 

amplitude from the same incident ray CD and are therefore coherent. The rays 1 

and 2 are close to each other and interfere to produce  brightness or darkness 

depends on the path difference between the two reflected light rays, which in 

turn depends on the thickness of the air film at the point of incidence. 
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Conditions for Bright and Dark Rings: 

 

The optical path difference between the rays is given by  

∆= 2�����
 − �/2 
 Since    � = 1 for air and ���
 = 1 for normal incidence of light, 

∆= 2� −
�

2
 

• The intensity maxima occur when the optical path difference ∆= �� 

If the difference in the optical path between the two rays is equal to an integral 

number of full waves, then the rays meet each other in phase. The crests of one 

wave falls on the crests of the other and the waves interference constructively.  

Thus, if    2� −
�

2
= ��   or 

�� = ��� +  �!/�  , then bright fringe is obtained. 

• The intensity minima occur when the optical path difference is ∆=
(2�+1)�

2
  

 If the difference in the optical path between the two rays is equal to an odd 

integral number of half-waves, then the rays meet each other in opposite 

phase. The crest of one wave fall on the troughs of the other and the waves 

interfere destructively.  
Hence if,   2� −

�

2
=

(2�+1)�

2
  , or 

�� = �!, then dark fringe is produced. 

 

Circular Fringes: 

 In Newton’s ring arrangement, a thin air 

film is enclosed between a plano-convex lens and 

a glass plate. The thickness of the air film at the 

point of contact is zero and gradually increases as 

we move outward. The locus of points where the 

air film has the same thickness then fall on a 

circle whose centre is the point of contact. Thus, 

the thickness of air film is constant at points on 

any circle having the point of lens –glass plate 

contact as the centre. The fringes are therefore 

circular.  

 

Determination of wavelength of Light: 

 A plano-convex lens of large radius of curvature say about 100cm, and a 

flat glass plate are cleaned. The lens is kept with its convex face on the glass 

plate. The system is held under a low power traveling microscope kept before a 

sodium vapour lamp. It is arranged that the yellow light coming from the sodium 

lamp falls on a glass plate held at 450 light beam. The light is turned through 900 

and is incident normally on the lens-plate system. The microscope is adjusted till 

the circular rings came in to focus. The centre of the cross wire is made to come 

into focus on the centre of the dark spot, which is at the centre of the circular 

ring system.  

 Now turning the screw the microscope is moved on the carriage slowly 

towards one side , say right side. As the cross wire move in the field of view, dark 

rings are counted. The movement is stopped when the 20nd dark ring is reached. 

The vertical cross wire is made tangential to the 20th ring and the reading is 
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noted with the help of the scale graduated on the carriage. Thus starting from the 

20th ring , the tangential position of the 19th,18th , 17th, 16th, ………….5th  dark rings 

are noted down. Now the microscope is moved quickly to the left side of the ring 

system and it is stopped at the 5th dark ring. The cross wire is again made 

tangential to the 5th dark ring and its position is noted. Thus starting from the 5th 

ring , the tangential position of the 6th,7th , 8th, 9th, ………….20th  dark rings are 

noted down.   

 The difference between the readings on right and left sides of the 5th dark 

ring gives the diameter value. The procedure is repeated till 20th ring is reached 

and its reading is noted. From the value of the diameters, the squares of the 

diameters are calculated. A graph is plotted between Dm
2 and the ring number 

“m”. A straight line graph would be obtained as shown in figure 8. 

 
Figure 8 

 

We have,  

                                          ��
2 = 4��"          #�
 ��$ 
%&' 

and  

��+(
2 = 4(� + ()�"          #�
 (� + ()�$ 
%&' 

 

��+(
2 − �

�

2
= 4(�" 

� =
�)+*

2 − �)2

4("
 

� =
�+�(,

4"
 

The slope of the straight line in figure 8 gives the value of 4λR    .  

The radius of curvature R of the lens may be determined using a spherometer 

and λis computed with the help of the above equation. 

 

 

� Multiple Beam Interferometry-  

Multiple Reflections from a Plane Parallel Film: 
 The high order reflection occurring at interfaces of thin film are 

negligible. But, if for any reason the reflection of the interface is not negligible, 

then the higher order reflections are to be taken into account. When the reflected 

or transmitted beams meet, multiple beam interference takes place. We are 



                                                                                     

Page 10 of 21 

especially interested in the fringes associated with the air space between two 

reflecting surfaces.  
        

 
Figure 9 

Let us consider the reflected rays 1,2,3, etc. as shown in figure 9. The   

amplitude of the incident ray is a. Let ρ be the reflection coefficient, τ the 

transmission coefficient.    

 

 

The amplitude coefficient of reflection is 

- =
��(+%���, �# �$, 
,#+,��,� .�
,

��(+%���, �# �$, %&�%�,&� .�
,
 

If the film does not absorb light, the amplitudes of the reflected and transmitted 

waves are -  and �(1 − -) respectively.  

 

Intensity Distribution: 

Let a be the amplitude of the light incident on the first surface. A certain 

fraction of this light aρ, is refracted and another fraction aτ is transmitted see 

figure 9. The factors ρ and τ are known as the amplitude reflection coefficient 

and amplitude transmission coefficient respectively. Again at the second surface, 

part of the light is refracted with amplitude aρ2 and part is transmitted with 

amplitude aτ2 . The next ray is transmitted with an amplitude aρ2τ2   , the next 

one with after that with aρ4τ2 and so on. If T and R be the fractions of the incident 

light intensity which are respectively transmitted and refracted at each silvered 

surface, then τ2 = T and ρ2 = R . Therefore the amplitude of the successive rays 

transmitted through the pair of plates will be  

                                         aT, aTR, aTR2 , …….. 

In complex notation , the incident amplitude is given by i tE ae ω= . Then 

the waves reaching a point on the screen will be  

                                          

1

( )

2

2 ( 2 )

3

( 1) [ ( 1) ]

,

i t

i t

i t

N j t N

N

E aTe

E aTRe

E aTR e and so on

E aR Te

ω

ω δ

ω δ

ω δ

−

−

− − −

=

=

=

=

 

By the principle of superposition, the resultant amplitude is given by  

 
2 2 3 3

......
i i i

A aT aTRe aTR e aTR e
δ δ δ− − −= + + + +                 (8) 
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2 2 3 3[1 ......]i i iA aT Re R e R eδ δ δ− − −= + + + +  

Using this expression for sum of the terms of a geometrical progression, we get 

                      A =
1

1

N iN

i

R e
aT

Re

δ

δ

−

−

−

−
                                                 (9) 

When the number of terms in the above expression approaches infinity, the term 

RN iNe δ− tends to zero, and the transmitted amplitude reduces to 

1
[ ]
1 i

A aT
Re δ−

=
−

 

The complex conjugate of A is given by  

   
* 1

[ ]
1 i

A aT
Re δ+

=
−                                                  

(11)    

The transmitted energy IT = AA* 

                                               

2 2 2 2

2

2 2 2 2

2 2

2 2 2 2

2
2 2

(1 Re )(1 Re ) 1 ( e )

1 2 1 2 2 2 )

(1 ) 2 (1 )
(1 ) 4

2

i i i i

a T a T

R R e

a T a T

R R Cos R R R RCos

a T a T

R R Cos
R R Sin

δ δ δ δ

δ δ

δδ

− + −
= =

− − + − +

= =
+ − + − + −

= =
− + − − +

 2 2

2
2

2

1

4(1 )
1

(1 ) 2

a T

RR
Sin

R

δ

 
 

=  
−  +

 − 

                                                        (12) 

The intensity will be maximum when sin2 
2

δ
 =0  ,  i.e. δ= 2mπ.  

Where m=  0,1,2,3,4,5,. 

Thus,                                          
2 2

max 2
[ ]
(1 )

a T
I

R
=

−                                                      

(13) 

The intensity will be a minimum, when sin2 
2

δ
 =1 i.e. δ   =(2m+1)π,  

Where m=  0,1,2,3,4,5, 
2 2 2 2

min 2 2

2

1
[ ]

4(1 ) (1 )
1

(1 )

a T a T
I

RR R

R

= ⋅ =
− ++

−

                                 (14)                 

  We can now rewrite the equation (12)  as  

max

2

2

4
1

(1 ) 2

T

I
I

R
Sin

R

δ
=

+
−                                                

(15) 

Similarly the interference intensity from the reflected light beams can be shown 

to be   
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2

max

2 2

4 ( )
2

(1 ) 4 ( )
2

R

RSin I

I

R RSin

δ

δ
=

− +
                                                 

(16) 

 

� Fabry- Perot Interferometer and Etalon 
 The Fabry- Perot Interferometer is a high resolving power instrument, 

which makes use of the fringes of equal inclination, produced by transmitted 

light after multiple reflections in an air film between the two parallel highly 

reflecting glass plates.  

Fig. 11 

 As shown in figure 11, the interferometer consists of two optically plane 

glass plates A and B with their inner surfaces silvered, and placed accurately 

parallel to each other. Screws are provided to secure parallelism if disturbed. 

This system is difficult to manufacture and is no more in use. Instead of it an 

etalon which is more easily manufactured is used.  

 The etalon consists of two semi-silvered plates rigidly held parallel at a 

fixed distance apart. The reflectance of the two surfaces can be as high as 90 to 

99%. Although both reflected and transmitted beams interfere with each other, 

the Fabry-Perot interferometer is usually used in the transmissive mode. 

 S is a broad source of monochromatic light and L1 convex lens, which is 

not shown in the figure, but which makes the rays parallel. An incident ray 

suffers a large number of internal reflections successively at the two silvered 

surfaces see figure11. At each reflection a small fraction of light is transmitted 

also. Thus each incident ray produces a group of coherent and parallel 

transmitted rays with a constant path difference between any two successive 

rays. A second convex lens L brings these rays together to a point in its focal 

plane where they interfere. Hence the rays from all points of the source produce 

an interference pattern on a screen placed in the focal plane of the lens. 

 

Formation of Fringes: 

Let d be the separation between the two silvered surfaces and θ the 

inclination of particular ray with the normal to the plates. The path difference 

between any two successive transmitted rays corresponding to the incident ray 

is 2dcosθ, the condition for these rays to produce maximum intensity is given by  

                                 2dcosθ = mλ                                                         (20) 

Here m is an integer. The locus of point in the source, which give rays of 

constant inclination, θ is a circle. Hence, with an extended source, the 
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interference pattern consists of a system of bright concentric rings on a dark 

back ground, each ring corresponding to a particular value of θ. 

 

Determination of Wavelength: 

When the reflecting surface A and B of the interferometer are adjusted 

exactly parallel, circular fringes are obtained. Let m be the order of the bright 

fringe at the centre of the fringe system. As at the centre θ=0, we have  
 

2t = mλ 
 

If the movable plate is moved a distance λ/ 2, 2t changes by λ and hence a 

bright fringe of the next order appears at the centre. If the movable plate is 

moved from the position x1 to x2 and the number of fringes appearing at the 

centre during this movement is N then     

2 1
2 1

2( )

2

x x
N x x or

N

λ
λ

−
= − =  

Measuring x1 , x2 and N one can determine the value of λ 

 

     

Measurement of Difference in Wavelength: 

The light emitted by a source may consist of two or more wavelengths, D1 

and D2 lines in case of sodium. Separate fringe patterns corresponding to the 

two wavelengths are not produced in Michelson interferometer. Hence, 

Michelson interferometer is not suitable to study the fine structure of 

spectral lines. On the other hand, in Fabry- Perot interferometer, each 

wavelength produces its own ring pattern and the patterns are separated from 

each other. Therefore, Fabry-Perot interferometer is suitable to study the 

fine structure of spectral lines.  

Difference in wavelengths can be found using coincidence method. Let λ1 

and λ2 be two very close wavelengths in the incident light. Let us assume that 

�1 > �2. Initially, the two plates of the interferometer are brought into contact. 

Then the rings due to λ1 and λ2 coincide partially. Then the movable plate is 

slowly moved away such that the ring systems separate and maximum 

discordance occurs. Then the rings due to λ2 are half way between those due to 

λ1 . Let t1 be the separation between the plates when maximum discordance 

occurs. At the centre  

1 1 1 1 2

1
  2t   =  m   =  ( m  + ) 

2
λ λ                                                 (21) 

 

       

2
1 1 2

or m  ( )
2

λ
λ λ− =

 
 

                              (22) 

 

Using this value of m1 in equation (21), we get   

2
1 1

1 2

2
2( )

t
λ

λ
λ λ

=
−

                                               (23) 

2
1

1 22( )
m

λ

λ λ
=

−
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also 

              (24) 

When the separation between the plates is further increased, the ring systems 

coincide again and the separate out and maximum discordance  occurs once 

again. If t2 is the thickness now,  

2 2 1 2 2

3
2 ( )

2
t m mλ λ= = +

                                             
(25) 

From equations (25) and (21) we get 

  

2 1 2 1 1 2 1 2 22( ) ( ) ( )t t m m m mλ λ λ− = − = − +

                              

(26) 

2
2 1

1 2

( )
( )

or m m
λ

λ λ
− =

−
 

Using the above expression into equation (26) we get, 

 

1 2
2 1

1 2

2( )
( )

t t
λ λ

λ λ
− =

−
 

2

1 2
1 2

2 1 2 1

( )
2( ) 2( )

mean

t t t t

λλ λ
λ λ∴ − = =

− −
                                        (27) 

� Diffraction: 
Diffraction is the bending of waves around the edges of an obstacle is 

called diffraction. When the waves encounter obstacles or openings , they bend 

round the edge of the obstacles , if the dimensions of the obstacles are 

comparable to the wavelength of the waves. The bending of waves around the 

edges of an obstacle is called diffraction. 

Diffraction is the result of interaction of light coming from different parts 

of the same wave front. The different maxima are of varying intensities with 

maximum intensity for central maxima. Diffraction fringes are not of the same 

width.  

 

� Types of diffraction: 
The diffraction phenomenon is classified into two types 

(i) Fresnel diffraction and (ii) Fraunhoffer diffraction. 

 

 

 

(i) Fresnel Diffraction:  

In this type of diffraction , the source of light and screen are effectively at 

finite distances from the obstacle see figure 12a. 

2

1 2
1 2

1 14 4

mean

t t

λλ λ
λ λ− = ≅

2

1 2 1 2, meanbut and isvery smallλ λ λ λ λ= −
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Figure 12 

Observation of Fresnel diffraction phenomenon does not require any 

lenses. The incident wave front is not planner. As a result, the phase of secondary 

wavelets is not the same at all points in the plane of the obstacle. The resultant 

amplitude at any point of the screen is obtained by the mutual interference of 

secondary wavelets from different elements of unblocked portions of wavefront.  

It is experimentally simple but the analysis proves to be very complex. 

 

(ii) Fraunhoffer’s diffraction 

In this type of diffraction, the source of light and the screen are effectively at 

infinite distances from the obstacle.  Fraunhoffer diffraction pattern can be easily 

observed in practice. The conditions required for Fraunhoffer diffraction are 

achieved using two convex lenses , one to make the light from the source parallel 

and the other to focus the light after diffraction on to the screen see figure 12  b, 

The diffraction is thus produced by the interference between parallel rays. The 

incident wave front as such is plane and the secondary wavelets, which originate 

from the unblocked portions of the wave front, are in the same phase at every 

point in the plane of the obstacle. This problem is simple to handle 

mathematically because the rays are parallel. The incoming light is rendered 

parallel with a lens and diffracted beam is focused on the screen with another 

lens.      

 

� Diffraction due to a Narrow Wire: 
In Fig.13, S is a narrow slit illuminated by  monochromatic light, AB is the 

diameter of the narrow wire and MN is the screen. The length of the wire is 

parallel to the illuminated slit and perpendicular to the plane of the paper. The 

screen is also perpendicular to the plane of the paper. XY is the incident 

cylindrical wave front. P is a point on the screen such that SOP is perpendicular 

to the screen. EF is the region of the geometrical shadow and above E and below 

F, the screen is illuminated.  

Now let us consider a point P’ on the screen  in the illuminated portion. 

Let us join S to O’ , a point on the wave front . O’ is the pole of the wave front with 

reference to P’. the intensity P’ due to the wave front above O’ is the same at all 

points and the effect due to the wave front BY s negligible. The intensity at P’ will 

be a maximum or a minimum depending on whether the number of half period 

strips between O’ and A is odd or even. Thus , in the illuminated portion of the 
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screen,  diffraction bands of gradually diminishing intensity will be observed. 

The distinction between maxima  and  minima will become less if  P’ is far away 

from the edge E  of  the geometrical shadow. Maxima  and minima can not be 

distinguished if  the wire is very narrow, because in that case the portion BY of 

the wavefront also produces illumination at P. 

 
Figure 13 

Now consider a point P” in the region of the geometrical shadow. 

Interference bands of equal width will be observed in this region due to the fact 

that points A and B, of the incident wavefront , are similar to two coherent 

sources . The point P” will be of maximum or minimum intensity , depending on 

whether the path difference (BP” –AP”) is equal to even or odd multiplies of λ/2. 

The fringes width βis given by 

β= D  λ/d 

Where D is the distance between the wire and the screen,   λ is the wave 

length of the light and d is the distance between the two coherent sources. In this 

case d=2r where 2r is diameter of the wire (AB = 2r). 

β= Dλ/d ……….. (a) 

β= Dλ/2r ………. (b) 

r = Dλ/2β ……….. (c) 

λ  =  2βr / D ……….. (d) 

Here β, is the fringe width corresponds to the 

distance between any two consecutive maxima. Thus, 

from equation (c) and (d), knowing the values of r or 

λ, λ or r can be determined . In figure 14 bands 

marked “a” represents the interference bands in the  

region of the geometrical shadow, bands marked “b” 

and “c” represents the diffraction bands in the 

illuminated portion. The intensity distribution due to 

a narrow wire is shown in figure 15(a). The centre of 

the geometrical shadow is bright.     Figure 14 

 

On the other hand if the wire is very thick , the interference bands cannot 

be noticed. Now from equation (b),  β= Dλ/2r; where β is the fringe width. As the 

diameter of the wire increases the fringe width decreases and if the wire is 

sufficiently thick, the width of the interference fringes decreases considerably 

and they cannot be distinguished. The intensity falls off rapidly in the 

geometrical shadow.  
The diffraction pattern in the illuminated portion will be similar to that of 

the thon wire as in figure 15(b). Coloured fringes will be observed with white 

light. 
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Figure 15 

 

� Cornu’s Spiral: 
To find the effect at a point due to an incident wave front Fresnel’s 

method consists in dividing the wavefront into half period strips or half period 

zones. The path difference between secondary waves from two corresponding 

points of neighboring zones is equal to λ/2 .  

 

 

 

 
Fig.16 

In figure 16, S is a point source of light and XY is the incident spherical 

wave front. With reference to the point P, O is the pole of the wave front. Let a 

and b be the distances of the points and P from the pole of the wave front. With p 

as centre and b, the radius, let us draw a sphere touching the incident wavefront 

at O. the path difference between the waves traveling in the directions SAP and 

SOP is given by 

d  = SA + AP –SOP = SA + AP –(SO+OP)= a+AB+b –(a+b)  =  AB 

For large distances of a and b , AM and BN can be taken to be 

approximately equal and the path difference d can be  written as       

d  = AB  =  MO+ON 

But , from the property of a circle,  
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If AM happens to be the radius of the nth half period zone, the this path 

difference is equal to  
2

λn
 according to the Fresnel’s method of constructing the 

half period zones. 
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The resultant amplitude at an external point due to the wave front can be 

obtained by the following method. Let the first half period strip of the Fresnel’s 

zone be divided in to eight sub strips, and these vectors are represented from O 

to M1(See figure 16a). The continuous phase change is due to the continuous 

increase in the obliquity factor from O to  M1.The resultant amplitude at the 

external point due to the first  half period strip is given by OM1 = m1 , Similarly , if 

the process is continued , we obtain the vibration curve M1M2 . The portion M1M2  

corresponds to the second half period strip.  

                                        
Figure 16a       Figure 16b 

 

The resultant amplitude at the point due to the first two half period strips 

is given by OM2 =A . if instead of eight sub strips, each period zone is divided into 

sub strips of infinitesimal width , a smooth curve will be obtained. The complete 

vibration curve for whole wave front will be a spiral as shown in figure 16b. 

X and Y corresponds to the two extremities of the wave front and M1 and 

M2 refer to the edge of the first, second, etc. Half period strips of the lower 

portion of the wave front. This is called Cornu’s Spiral. The characteristics of this 

curve is that for any point P on the curve, the phase lag δ directly proportional to 

the square of the v. The distance is measured along the length of the curve from 

the point O. For oath difference of λ , the phase difference 2π. Hence, for a path 

difference of d , the phase difference δ is given by        

 

d
λ

π
δ

2
=

                                                          
(30) 

Substituting the value of d from equation 28, we get , 

 



                                                                                     

Page 19 of 21 

]
)(2

[
2

2

λ

π
δ

ab

bah +
=

                                                   
(31) 

 

2

2
v

π
δ =

                                                           
(32) 

The value of v is given by  
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(33) 

Cornu’s Spiral can be used for any diffraction problem irrespective of the values 

of a ,b and λ. 

 

 

� Fraunhoffer Diffraction 
We have already seen about the Fraunhoffer diffraction and we also know 

that in this type of diffraction, the source of light and the screen are effectively at 

infinite distances from the obstacle.  And we have also seen that this problem is 

simple to handle mathematically because the rays are parallel. The incoming 

light is rendered parallel with a lens and diffracted beam is focused on the screen 

with another lens.      

 

 

� Fraunhoffer Diffraction at Double Slit: 
In figure 17, AB and CD are two rectangular slits parallel to one another 

and perpendicular to the plane of the paper. The width of each slit is a and the 

width of opaque portion is b. L is a collecting lens and MN is a screen 

perpendicular to the plane of paper. P is a point on the screen such that OP is 

perpendicular to the screen. Let a plane wave front be incident on the surface of 

XY. All the secondary waves traveling in a direction parallel to OP come to focus 

at P. Therefore, P, corresponds to the position of the central bright maxima,         

 
                                                              Figure 17 

In this case the diffraction pattern has to be considered in to two parts  (i) the 

interference phenomenon due to the secondary wave emanating from the 

corresponding points of the two slits and (ii) the diffraction pattern due to the 

secondary waves from the two slits individually. For calculating the position of 
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the interference maxima and minima, the diffracting angle is denoted as θ and 

for the diffraction maxima and minima it is denoted as ф . Both the angle θ and ф 

refer to the angle between direction of the secondary wave and the initial 

direction of the incident light. 

(i) Interference maxima and minima: 

Let us consider the secondary waves traveling in a direction inclined at an angle 

θ with the initial direction. 

 

 

In the ΔCAN (see figure 18) ,   
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                        θSinbaCN )( +=∴                  (34) 

 

 

If the path difference is equal to odd multiples of  

λ/2 , θ gives the direction of minima due to 

interference of the secondary waves from the two 

slits.                                                                                                              Figure 18 
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Now putting n=1,2,3,….etc. the values of θ1, θ2, θ3……etc. corresponding to the 

directions of minima can be obtained. From equation 2 
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(32) 

On the other hand , if the secondary waves travel in a direction θ’ such that 

the path difference is even multiples of λ/2 , then θ’ gives the direction of the 

maxima due to interference of light waves emanating from the two slits. 
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putting n=1,2,3,….etc. the values of θ’1, θ’2, θ’3……etc. corresponding to the 

directions of maxima can be obtained. From equation (32), we get  
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Thus the angular separation between any two consecutive minima or maxima 

is equal to 
( )a b

λ

+
. The angular separation is inversely proportional to (a+b) , 

the distance between the two slits. 

 

(ii) Diffraction Maxima and Minima: 

Let us consider the secondary waves traveling in a direction inclined at an 

angle Φ with initial direction of the incident light. If the path difference is BM is 

equal to λ the wave length of light used then Φ will give the direction of the 

minimum see figure 20. That is, the path difference between secondary waves 

emanating from the extremities of a slit(i.e. points A & B) is equal to λ. 

Considering the wave front on AB to be made up of the two halves, the path 

difference between the corresponding points of the upper and lower halves is 

equal to λ /2.  

The effect at P’ due to the wave front incident on AB is zero. Similarly for the 

same direction of the secondary waves , the effect at P’ due to the wave front 

incident on the slit CD is also zero. In general  sin
n

a nλΦ =    .  

Putting n=1,2,3,….etc. the values of Φ1, Φ2, Φ3……etc. corresponding to the 

directions of diffraction minima can be obtained.  


